ROONGROJ CHOKNGAMWONG
Center for Earth Observing and Space Research, George Mason University, Fairfax, Virginia
LONG S. CHIU
Center for Earth Observing and Space Research, George Mason University, Fairfax, Virginia, and Institute of Space and Earth Information Science, Chinese University of Hong Kong, Shatin, Hong Kong
ABSTRACT
Daily rainfall data collected from more than 100 gauges over Thailand for the period 1993–2002 are used to study the climatology and spatial and temporal characteristics of Thailand rainfall variations. Comparison of the Thailand gauge (TG) data binned at 1° x 1° with the Global Precipitation Climatology Centre (GPCC) monitoring product shows a small bias (1.11%), and the differences can be reconciled in terms of the increased number of stations in the TG dataset. Comparison of daily TG with Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 rain estimates shows improvements over version 5 (V5) in terms of bias and mean absolute difference (MAD). The V5 is computed from the adjusted Geostationary Operational Environmental Satellite (GOES) precipitation index (AGPI) and V6 is computed using the TRMM Multisatellite Precipitation Analysis (TMPA) algorithm. The V6 histogram is much closer to that of TG than V5 in terms of rain fraction and conditional rain rates. Scatterplots show that both versions of the satellite products are deficient in capturing heavy rain events. In terms of detecting rain events, a critical success index (CSI) shows no difference between V6 and V5 3B42. The CSI for V6 is higher for the rainy season than the dry season. These results are generally insensitive to rain-rate threshold and averaging periods. The temporal and spatial autocorrelation of daily rain rates for TG, V6, and V5 3B42 are computed. Autocorrelation function analyses show improved temporal and spatial autocorrelations for V6 compared to TG over V5 with e-folding times of 1, 1, and 2 days, and isotropic spatial decorrelation distances of 1.14°, 1.87°, and 3.61° for TG, V6, and V5, respectively. Rain event statistics show that the V6 3B42 overestimates the rain event durations and underestimates the rain event separations and the event conditional rain rates when compared to TG. This study points to the need to further improve the 3B42 algorithm to lower the false detection rate and improve the estimation of heavy rainfall events.
งานวิจัยชิ้นนี้ได้ทำการศึกษาปริมาณน้ำฝนรายวันในสถานีตรวจวัดมากกว่า 100 สถานี ในประเทศไทย ย้อนหลังกลับไปในช่วงปีค.ศ. 1993 ถึง ปี 2002 เพื่อหาความสัมพันธ์ในเชิงพื้นที่และเวลาของการเปลี่ยนแปลงปริมาณน้ำฝนในประเทศไทย นอกจากนี้ยังทำการเปรียบเทียบข้อมูลระหว่างข้อมูล Thailand Gauge (TG) และฐานข้อมูล Tropical Rainfall Measuring Mission (TRMM)
ขอขอบคุณ: http://www.sciencedirect.com/
สืบค้นเพิ่มเติม:http://www.sciencedirect.com/