Utility of renewable energy in China’s low-carbon

Tuesday, 17 July 2018 Read 1014 times Written by 

d22-1

Utility of renewable energy in China’s low-carbon transition
Wenjuan Dong and Ye Qi
Friday, May 18, 2018

Editor's Note: The implications of the low carbon transition for the power industry are broad and far-reaching. China should vigorously prepare for the age of large-scale applications for renewable energy, write Wenjuan Dong and Ye Qi. The Chinese version of this piece originally appeared on Caixin.com. This English version was translated by Jack C. Glasgow.
Large scale renewable energy[1] deployment is core to China’s energy transition. Although China’s electric power consumption will continue to increase in the long-term, its consumption increases have started to decelerate since 2012. This has become a key moment for China’s transition to low-carbon energy and power industries. In recent years, electric power sources have become diversified, while thermal power[2] has become cleaner; the increasing share of renewable energy has become a clear trend. In 2017, renewable energy encompassed 36.6% of China’s total installed electric power capacity, and 26.4% of total power generation. According to Energy Production and Consumption Revolution Strategy 2016-2030, by 2030, 50% of total electric power generation will be from non-fossil energy sources, including nuclear and renewable energy. Renewable energy will shift from meeting new electricity needs to replacing existing electricity needs that have been traditionally satisfied by thermal power productions. It is expected that renewable energy will become the main power source by 2030.

In recent years, annual proportion of renewable energy in new installed capacities have gradually increased. In 2017, renewable electric power capacity (including mid-to-large sized hydropower) stood at two-thirds of the power industry’s new installed capacity. This set a new record, after renewable energy encompassed to surpass 50% of the new installed capacity in 2013. New installed solar power capacity stood at 53.1GW, which was over half of the global new solar power capacity. At the same time, new installed wind power capacity stood at 15 GW, taking approximately one-fourth of its global new installed capacity. Additionally, hydropower and biomass power stood at 12.9 GW and 2.7 GW, respectively. China’s power industry’s installed capacity increase remains at a significant pace, while there is a clear trend towards low-carbon power compositions.

The replacement of thermal power by renewable energy can be more clearly observed from an investment perspective, under which the share increase is even faster. Total investment in the power sector in 2017 stood at RMB 765.4 billion (USD 113.4 billion), of which 85% of the investment (USD 96.6 billion) went towards renewable energy (Figure 2). Even without counting investments in mid-to-large sized hydropower systems, renewable energy still stood at 77% of the total electric power investments. Divided by types, wind and solar power investments encompassed 18% and 48% of the investments in power sector in 2017. While renewable energy investments have continued to increase, thermal power investments have shown a trend of decrease. Meanwhile, conventional hydropower development in the late 12th-Five Year Plan period have become saturated, causing hydropower investments after 2013 to quickly contract. It is therefore evident that China’s energy transition strategy and renewable energy support policies have effected very pronounced investment directions. In addition, cost decreases in renewable energy also had a stimulating effect to the associated sector’s investments.

From a power generation perspective, however, the severe impact of renewable energy on newly added electricity has not increased steadily. In terms of total power generation, renewable energy’s increase has also been slow. Figure 3 shows that renewable energy investments, as part of total electric power investments, have entered a stable growth trend; while post 2007, its share in new installed capacity has also been in a generally increasing trend. Yet, its fluctuations in electricity replacement have severely increased. In 2015, in addition to meeting new electricity demands, renewable energy, for the first time, began to replace thermal electricity stores. However, in 2016 this trend experienced a great reversal; until 2017, renewable energy share of new electricity generation has dropped to 34.1%. Under the current economic growth slowdown and power supply surplus, these fluctuations reflect the tension and polarity between the thermal power and renewable power industries. They also reveal the difficulties of the national energy transition strategy at the local levels.

Increasing the utility of renewable energy has already become the key to China’s low carbon power transition. If curtailment problems can be readily solved, renewable energy will become more apt to meet the growing electricity needs (Figure 3). With the example from 2017, if renewable energy curtailments were to be resolved, then its share in meeting new electricity needs will raise from 37.8% to 63.4%. Similarly, it will increase its share of total electricity generation by 1.6% (from 26.4% to 28.0%). In reality, however, renewable energy’s share of total electricity generation only increased by 0.7% in 2017. If utility from curtailed nuclear electricity were added to the calculation, non-fossil electricity production’s share as part of total electricity production would have increased by 1.9% (from 30.3% to 32.2%). In considering China’s non-fossil generated electricity having increased by 1.1% in 2017 compared to the previous year, electricity curtailment problems have caused a tremendous utility loss. In addition, if renewable energy and nuclear electricity curtailments were to be effectively mitigated, the coal use for thermal power generation would have been reduced by 37.68 million tons[3], which is equivalent to 100 million tonnes of carbon dioxide emissions reduction. An increase in renewable energy utility can save from environmental damage and carbon reduction inefficiency.

Credit : https://www.brookings.edu/2018/05/18/utility-of-renewable-energy-in-chinas-low-carbon-transition/

 

โครงการ

โครงการบรรเทาการปลดปล่อยก๊าชเรือนกระจก จากภาคเกษตรด้วยสารยับยั้งไนตริฟิเคชั่น
ชุดโครงการพัฒนาเทคโนโลยีด้านการเปลี่ยนแปลงสภาพภูมิอากาศของประเทศไทย
โครงการพัฒนาโมเดลต้นแบบ การจัดการขยะชุมชนต้านภัยโลกร้อนระดับจังหวัด
โครงการพัฒนาดัชนีความร้อน และการประยุกต์ใช้ศึกษาคลื่นความร้อนในประเทศไทย
ซอฟต์แวร์ประมวลผลปริมาณคาร์บอนในป่าและต้นไม้
ชุดโครงการศึกษาความตระหนักรู้และการปรับตัวต่อการเปลี่ยนแปลงสภาพภูมิอากาศของประเทศไทยในบริบทของความตกลงปารีส

เครื่องมือ

โปรแกรมประมวลผลดัชนีความร้อน สำหรับประเทศไทย
โปรแกรมการวิเคราะห์ และประมวลผลดัชนีความล่อแหลมจากการเปลี่ยนแปลงสภาพภูมิอากาศ และภัยพิบัติในระดับจังหวัดและท้องถิ่น
ระบบเตือนภัยความร้อนและหมอกควัน
MCCAI ดัชนีการดำเนินงานด้านการเปลี่ยนแปลงสภาพภูมิอากาศของเทศบาล
GHG-3Rs
แบบสอบถามออนไลน์: CCAI

ดัชนี

Ncar
Ncar
SOI Annual
Multivariate ENSO
Indian Summer and Western North Pacific Monsoon Index
Blank

ปริมาณคาร์บอน

ปริมาณคาร์บอน
ปริมาณคาร์บอนทั่วโลก
index-carbon
Carbon Market
Point Carbon
Blank

ภูมิปัญญา

Biogas
ภูมิปัญญา
ระบบข้อมูลพื้นที่สีเขียวและป่านิเวศในเมือง
โครงการศึกษาผลกระทบ จากการเปลี่ยนแปลงสภาพภูมิอากาศต่อยางพาราในประเทศไทย
Blank
Blank