Hydroclimate variability and long-lead forecasting of rainfall over Thailand

Tuesday, 05 January 2016 Read 980 times Written by 

Hydroclimate variability and long-lead forecasting of rainfall over Thailand by large-scale atmospheric variables
Nkrintra Singhrattna a , Mukand S. Babel a & Sylvain R. Perret a b
a Water Engineering and Management , Asian Institute of Technology , Pathumthani , Thailand
b Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR G-Eau , Montpellier , France

Published online: 20 Jan 2012.
Editor Z.W. Kundzewicz
Citation Singhrattna, N., Babel, M.S. and Perret, S.R., 2012. Hydroclimate variability and long-lead forecasting of rainfall over
Thailand by large-scale atmospheric variables. Hydrological Sciences Journal, 57 (1), 26–41.

Abstract

The development of statistical relationships between local hydroclimates and large-scale atmospheric variables enhances the understanding of hydroclimate variability. The rainfall in the study basin (the Upper Chao Phraya River Basin, Thailand) is influenced by the Indian Ocean and tropical Pacific Ocean atmospheric circulation. Using correlation analysis and cross-validated multiple regression, the large-scale atmospheric variables, such as temperature, pressure and wind, over given regions are identified. The forecasting models using atmospheric predictors show the capability of long-lead forecasting. The modified k-nearest neighbour (k-nn) model, which is developed using the identified predictors to forecast rainfall, and evaluated by likelihood function, shows a long-lead forecast of monsoon rainfall at 7–9 months. The decreasing performance in forecasting dry-season rainfall is found for both short and long lead times. The developed model also presents better performance in forecasting pre-monsoon season rainfall in dry years compared to wet years, and vice versa for monsoon season rainfall.

Key words rainfall; hydroclimate variability; ENSO; large-scale atmospheric variables; long-lead forecasting; statistical approach; modified k-nn model; cross-validated multiple regression; Chao Phraya River Basin; Ping River Basin; Thailand

Hydrological Sciences Journal
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/thsj20

This article was downloaded by: [101.108.117.212]
On: 15 May 2015, At: 07:38
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

โครงการ

โครงการบรรเทาการปลดปล่อยก๊าชเรือนกระจก จากภาคเกษตรด้วยสารยับยั้งไนตริฟิเคชั่น
ชุดโครงการพัฒนาเทคโนโลยีด้านการเปลี่ยนแปลงสภาพภูมิอากาศของประเทศไทย
โครงการพัฒนาโมเดลต้นแบบ การจัดการขยะชุมชนต้านภัยโลกร้อนระดับจังหวัด
โครงการพัฒนาดัชนีความร้อน และการประยุกต์ใช้ศึกษาคลื่นความร้อนในประเทศไทย
ซอฟต์แวร์ประมวลผลปริมาณคาร์บอนในป่าและต้นไม้
ชุดโครงการศึกษาความตระหนักรู้และการปรับตัวต่อการเปลี่ยนแปลงสภาพภูมิอากาศของประเทศไทยในบริบทของความตกลงปารีส

เครื่องมือ

โปรแกรมประมวลผลดัชนีความร้อน สำหรับประเทศไทย
โปรแกรมการวิเคราะห์ และประมวลผลดัชนีความล่อแหลมจากการเปลี่ยนแปลงสภาพภูมิอากาศ และภัยพิบัติในระดับจังหวัดและท้องถิ่น
ระบบเตือนภัยความร้อนและหมอกควัน
MCCAI ดัชนีการดำเนินงานด้านการเปลี่ยนแปลงสภาพภูมิอากาศของเทศบาล
GHG-3Rs
แบบสอบถามออนไลน์: CCAI

ดัชนี

Ncar
Ncar
SOI Annual
Multivariate ENSO
Indian Summer and Western North Pacific Monsoon Index
Blank

ปริมาณคาร์บอน

ปริมาณคาร์บอน
ปริมาณคาร์บอนทั่วโลก
index-carbon
Carbon Market
Point Carbon
Blank

ภูมิปัญญา

Biogas
ภูมิปัญญา
ระบบข้อมูลพื้นที่สีเขียวและป่านิเวศในเมือง
โครงการศึกษาผลกระทบ จากการเปลี่ยนแปลงสภาพภูมิอากาศต่อยางพาราในประเทศไทย
Blank
Blank